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LE’ITER TO THE EDITOR 

Algebraic areas distributions for two-dimensional Levy flights 

J Desbois 
Division de Physique ThCoriquet, lnstitut de Physique Nucldaire, 91406. Onay Cedex, 
France 

Received 13 February 1992 

Abtracl. We study curves generated by planar Levy Rights and calculate the probability 
distribution of the algebraic area ‘between the curve and the chord‘. We.compare our 
analytical result with compuler simulations. We also consider closed curves and give the 
result for the distribution of areas enclosed by those curves. 

In the 194Os, P Levy solved, among others, two important problems concerning 
two-dimensional Brownian curves [l]. For such curves of length f, he calculated: 

(i) the probability distribution P,(A, 1 )  for a closed curve to enclose a given 
algebraic area A. 

(ii) The probability distribution P(A, f) of the algebraic area A between an open 
curve and the chord linking its ends. 

Since that time, the study of such algebraic areas has aroused great interest among 
mathematicians and also physicists. For instance, the problem of the distribution 
P,(A, 1 )  has been recently re-examined in various contexts [2]. In particular, transport 
properties in disordered materials in the presence of magnetic fields are closely related 
to this distribution. It allows the calculation of corrections to weak localization 
(anomalous magnetoresistance [3]) as well as to localization lengths in Anderson 
insulators [4]. 

Our purpose in this letter is to extend the calculation of distributions P(A, I )  and 
PJA, f )  to two-dimensional Levy flights. Standard techniques (such as path integrals) 
used for the treatment of Brownian motion will not be efficient. Therefore, we will 
have to tackle the problem in another way, essentially by solving an integro-differential 
equation. 

First, we recall the definition of two-dimensional isotropic Levy flights. The proba- 
bility for a particle starting at ro(t =0) to reach r at time f reads [5] 

P+(resr;  f )=P+(r - re ;  f)=(L\ c d2kexp[ik.!r-ro)-r!k!~! 
2 

(1) \ 2v /  J 
where !k!  = (k :+k: )”*  and O<pS2.  

Due to isotropy, P, depends only on the end-to-end distance )r- rol that scales as 
f””. Distribution (1) is stable and indefinitely divisible. It satisfies the Chapman- 
Kolmogorov equation: 

PF(r; f)= d’r’P&(r-r’; t -T)Pp(r ’ ;~)  0 s  ‘7s f. (2) J 
This property can be used to write formally P+(r; f) as a path integral. Dividing [o, I ]  
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into N equal steps and taking the limit N - m, we get, with standard notation 

( N '  is a normalization factor). 
For p =2, after the functional integration over k we are left with 

e(,)=. 

,(O)-O 
9 r ( r )  exp( -: I,' i2 dr) .  I P2(r; t )  = N ( 4 )  

However, when p < 2, the functional integration cannot be done and (3) remains as 
a formal expression that is not easily tractable. Therefore in the following, we will not 
pursue these lines. 

Notice that P&(r; t )  can be evaluated in closed form only in a few special cases: 
(i) p =,2 (Brownian random walks) 

1 

4a i  P2( r; 1) = - (5) 

satisfying the diffusion equation AP, = aP,/at 
(ii) p = 1 (Cauchy flights) 

P,(r; i )  = - dk k J,(lkl. Ir'l) e-"*' 
;a JOW 
1 t 

( 6 )  -_ - 
2 a  (t2+r2)'/ '  

with AP, = -a'P,/af2. 
More generally, for 0 < p < 2 and r +. 00, we have the asymptotic behaviour 

Equations (7) show that, for a > p, the moments ( r e )  are infinite: P, is a broad 
distribution. It does not satisfy a diffusion-type equation. However, using (2) and (7), 
we can construct an integro-differential equation involving aPJat: 

Now, we consider the above-mentioned area distributions. A particle starting at 
MO (io, f = 0 )  will successively reach MI, M 2 , .  . . and, finally, MN (IN, N A t )  after a 
series of N Levy flights. (From M, to M,, , ,  the particle flies along a straight line.) A 
is the algebraic area enclosed by the polygon OMoM,M2 ... MNO. We study the 
quantity 

P(ro. rN, A, N A f )  
, 

= J d2rl  . . . d2rN_,  P,,(rl -ro; At) . . . P,(rN - Ai) 

(n is the unit vector along the positive z axis. We define B = En.) 
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The probability distribution P(A,  NAt) (A:  algebraic area between the curve and 
the cord) will be obtained by setting r, = O  in ( 9 )  and integrating over r,; PJA, N A t )  
(A: algebraic area enclosed by a closed curve) is obtained by setting r, = r, = O  and 
correctly normalizing (translation invariance is used). 

Expression (9) and the identity Z ? r s ( x ) = ~ ~ ~ d B e i B ”  lead to 

P(r,,, rN, A, N A I )  = (i,) - (I_m d B  eiBAK(r,, rN, B, N A i )  

with 

K(ru,  rN, B, N A i )  =I d’r, .. . d2rN-, P,.(r,-ro;Af). . . PC(rN-rN-, ;  Ai)  

(K(ru,  rN, B, 0 )  = S‘”(rN -ru)). 
Now, it is straightforward to deduce (( N - 1)Ai  f I )  

K(rQ, I N ,  B, f + A f )  

= dZrN-, K(ro,  rN-,, B, f)PG(rN - AI)  

We consider the limit At+O. Using (1)  and expanding to iirst order in AI, we get 

= (&)2 d’r’ dZkK( r,, r’, B, 1 )  

x exp[-iB/2. r’x r] exp[ik. ( r  - r‘)](lkl”). 

This is the integro-differential equation we have to solve 
Equation (12) can be rewritten 

aK 
J I  

---(rU, r, B, 1 )  = OK(r,, r, B, 1 )  (13)  

with 

O=(&)’I d 2 u d Z k ( ~ k ~ “ ) e x p [ - i u - k + ( i / 2 ) u ~ B ~ r ] e ” ’ V *  

When f i  = 2  (Brownian curves), the quantity (exp[ik.(r-r’)llkl”) becomes 
(-V:.exp(ik.(r-r‘)). Integrations by parts in (12 )  lead to: 

--(ti,. r, E, f)=(-iV-trxB)’K(r, ,  r, E, f )  
JK 
a t  

= HK(r,, r, E, I ) .  ( 14) 
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Thus, for Brownian curves, the operator 0 (13) is simply the Hamiltonian H describing 
the motion of a particle of charge (-1) in a constant magnetic field B. The kernel K 
is expressed in terms of the eigenstates of H: 

K(r, , ,  r ,  B, t )  = 1 YbJr0)'PMJr') eCE- 
MJ 

( M  and p integers, p 2 0;  LbM' are Laguerre polynomials). Thereafter, we will only be 
interested in zero angular momentum eigenstates. 

Introducing K ( B ,  t ) - j  d'rK(0, r, E, t)  = (l/cosh(Bt)) and Fourier transforming, 
we get 

1 p A'=- ( :) 2cosh(wA'/2) 

(A: area between the curve and the chord). 
Likewise, for the areas A enclosed by closed curves 

K , ( B , t ) = K ( O , O , B , t ) / K ( O , O , o , t )  

K(O,O,O, t ) = P 2 ( O ;  t ) = -  (17) 
47rl 

Bt 
sinh( Bt)  

- - 

Equations (16) and (18) are precisely the results obtained by Levy. However, the 
situation is not so simple when p < 2. 

Coming back to the operator 0 (13), we consider B > 0 for the moment. We notice 
that the commutator [u.V., U. B x 1'1 vanishes and introduce the right and left annihila- 
tion and creation operators [6] aR,  a i ,  aL, a L  + 

[ a n ,  a',] = 1 

(P= -iV). 

Using commutation relations, 0 can be written 
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Performing the angular integration over k and using the notation U, *iuy = /U/ e*i*, we 
develop the exponentials containing a'; and aR. After the angular integration over U, 
we are left with the expression: 

_ _  ,. ._ ii is, now, easy io express r'ne operator 0 oniy in terms oi the Hamiitonian H (14): 

H=(2aiaR+1)B.  

Finally, we get (for B > 0 and B < 0 ) :  

(a), =a(. + 1) .  . . (a + n - 1) 

1 . .  - 1 #""A"  *^ A - U\ ,I* - L ,ratLa L" " - I ,  ,. 
0 and H have the same eigenfunctions qM,u,p (15). 
The kernel K is given by: 

-,EL?; K ( r0 ,  r, B, O =  1 q L , p ( ~ o ) q d r ' )  e 
M.0 

and the eigenvalues E!&\ by (23) and (15). In particular [7] 

( P l -  JB1'/2C(64 
E0.P - P 

( F  is the hypergeometric function). 
Asymptotic expansion of r and F functions show that for large p values 

E&'- IBI'@(2p+ 

(We checked numerically that this asymptotic value is rapidly attained.) 
For the area A between the curve and the chord, we get the distribution: 

with 

Introducing the scaling variable A'= A/t2/", (27) is rewritten 
t m  

P ( A ' ) = L [  dBeiBA'K(B, 1). 
2?r -m 
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We briefly study the tail of this distribution. When JAI+w, because of the large 
fluctuations of the phase factor eiBA’, only small B values will give significant contribu- 
tions to P(A‘). Then, it is enough to take (26) for Eh:;. In those conditions, it is 
possible to show that 

K(B, l)=.e-”+lB~*” ( 3 0 )  
(a, is a constant) and 

when IA‘I+w (31) 
(compare with (7)). 

Now, we discuss Cauchy flights ( F  = 1) and first consider a curve consisting of 
onlytwo steps ( N = 2 , A t = l ,  t = N A t = 2 ;  A ’ = A / t 2 = A / 4 ) .  

Calculation for P(A’) leads to: 

p ( A ’ ) z  IA’I-‘1+(’/2)) 

8 
3m 

-_ - 

where 

and 

P( A’) - L”IAI when IA’(+m. 
A‘2 

Unfortunately, we have not been able to derive P(A’)  in closed form for a number of 
steps, N, greater than 2. 

So, we go to P(A‘) with f continuous. The energy levels ( 2 5 )  Eh:: are given by: 
20(p+4) 1+p‘ ’ 2- 

p!J;; ( r(l)) J % - I  ( 1 1  - B I p even 

=IBl”2[E p!J;; (r( I+:))’] p odd. ( 3 3 )  

The asymptotic value, J m ,  is practically reached for p =- - 4. To understand this 
faci, ii is inietesiing io consider iiie foiiowiiig integro-diiiereniiai equaiion invoiving 
a 2 ~ / d t 2 .  

Using the definition 

[K(r,, r,B, t+2At)+K(r0, r, B. t)-2K(ro,r, B, t+At) ]  
J*K 1 
-(ro,r,B,t)=lim--- 
at2  A M  (At)2 

with 
K(ro, r, E, t+2At) =I d2r‘d2r”K(ro,r‘,B, t ) P l ( r ” - r ’ ; A t ) P , ( r - r ’ ‘ ; A t )  

x exp[-iB/2. (r’ x r”+ r”x  r‘)] (34 )  
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after some algebra, we obtain 

J2K(ro ,  r, B, 1 )  

J f 2  

x exp[ik.( r -r ' )  -i(B/2). r'x r] 

x (lk - (B/4) x ( r -  r')l- Ik + (B/4) x ( r  - r')l)2 (35) 

( H  given by (14)). 

value 
Neglecting the integral term in (35) we get for the energy levels the approximate 

that is just the asymptotic value. 
The integral term seems to be essentially related to non-local effects that are 

drastically reduced in the presence of a 'magnetic field' (this one imposes a length 

In figure 1, a comparison is made between (29) with p = 1 (full curve) and computer 
simulations of Cauchy Rights (closed circles). We have generated 10 000 open curves, 
the number of steps for each curve being f = 800. The probability distribution P(A')  
is a broad one: it decreases, when IA'I is large, as lA'l-3'2. 

The agreement in figure 1 shows that the continuous limit is already attained for 
800 steps. (In fact, we got the same agreement for 400 steps. Significant discrepancies 
only appear when the number of steps is very small.) It is worth noticing that the exact 
energy levels (33) (or (25)) must be used in the theoretical calculation. If we replace 
(33) (or (25)) by (36), the agreement is destroyed (especially for small IA'I values). 

scale + - 1 ! 2 j ,  

A' 

Flgure 1. Computer simulations of Cauchy Rights ( & = I ) .  The probability distribution 
P ( A )  i s  plotted as a function of the scaling variable A'= A/f2t* (here, A = A / t ' ) .  t i s  
the number of steps (closed circles, f =800) and A the algebraic area between the curve 
and the chard (P (A ' )  = P(-A') ) .  T h e  full C U N ~  represents equation (29) with fi = 1. P(A')  
i s  a broad distribution: the tail decreases as IAI-"+"'" (here, l A l y 9 .  
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To conclude, we give the probability distribution P,(A, t )  for a closed curve to 
enclose a given algebraic area A: 

Of course, the scaling variable A’= A/t2/’ again appears. Finally, we get 

(Cf’ given by (25)). 
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